Importance of early snowfall for Swedish ski resorts: Evidence based on monthly data

Martin Falk
Austrian Institute of Economic Research (WIFO)

Eva Hagsten
Stockholm University

Gesellschaft für Regionalforschung, Igls, 25 February 2015
Motivation

- major ski markets are reaching a point of stagnation (=> tourism life cycle, Butler 1980)

- characteristics of SE downhill skiing market
 - long tradition
 - small market: 6.5 million skier visits
 - 70 downhill ski areas
 - high share of domestic visitors
 - from 2009/2010 onwards the number of skier visits declined
 - snow making widespread Sälen 62 out of 115 slopes covered

- possible factors for skiing demand
 - costs of skiing too high
 - low income elasticities combined low income growth
 - Increase in snow poor winter seasons
 - importance of snow fall in the early season
 - significant trend decline
Motivation

• Aim
 – relationship between the inter-annual variation of lift ticket sales and snow depth using monthly data

• contribution
 – First estimates using monthly data on output of ski lift operators
 – Precise information on lift ticket prices and lift ticket sales

• model
 – seemingly unrelated regression model (SUR) estimated jointly for five months for the winter seasons 93/94 to 13/14
 – economic factors are restricted to be identical across the winter months
 – snow conditions and calendar effects (early Easter holidays) are allowed to differ
Motivation

Evolution of lift ticket sales and skier visits

- Skier visits in 1000 (Top 17)
- Lift ticket sales in million SEK

- Skier visits (left axis)
- Lift ticket sales (const prices) million SEK (right axis)
Motivation

Evolution of the price index for ski lifts and total CPI

- CPI
- Deflator Lift ticket sales
- Price index ski lifts
Theoretical background

• Recreational demand
• Indirect utility function n number of skier days, d # ski trips
 \[V(n, d, z, p_{m}^{t}, p_{i}^{l}, z, T, \tau) = u(n, d, z) + \]
 \[\lambda \left[y - \sum_{i=1}^{m} n_{i}p_{m}^{t} - p_{i}^{l}d_{i} - z \right] + \mu \left[T - \tau - nt_{i}^{t} - \sum_{i=1}^{m} d_{i} \right] \]

• Budget and time constraints, costs of travelling and costs of stay
• Demand function, first order condition:
 \[n_{i} = n_{i}(p_{m}^{t}, p_{i}^{l}, t^{t}, y, T) \]

• effects
 \[\partial n_{i} / \partial y > 0, \partial n_{i} / \partial p_{i}^{t} < 0, \partial n_{i} / \partial p_{i}^{l} < 0, \partial n_{i} / \partial T > 0 \]
Theoretical background and previous literature

• Cost factors are main determinants of skiing demand (Tuppen, 2000)
• Gilbert and Hudson (2000) : high costs are the major constraints for skiing participation
• Priporas et al. (2014) : financial costs and interpersonal constraints are the main factors
• However: lack of snow and congestion on the slopes play a minor role
• winter sport destinations in the mature phase: income elasticities can be expected to be low
Theoretical background and previous literature

- Skier visits strongly depend on natural snow depth (Gonseth 2013, Falk 2014; Steiger 2011).
- Despite large investments in snow making facilities.
- Distribution of snowfall during the winter is of high importance (Burroughs, 2000).
- Poor start to the winter season may have a disproportionately negative impact on output and profits.
- Choice of the time scale of the weather data (e.g. monthly, daily or for total season) is crucial when modelling the relationship between weather and tourism demand.
- Gómez Martín (2005): weather conditions can cause major variations in visitor flow on the same days or on successive days (Hamilton et al., 2007, Shih et al. 2009).
- However, studies based on daily data have not accounted for price and income effects.
Empirical model

- Recreation/tourism demand model:

$$\ln YCP_{mt} = \alpha_{0m} + \alpha_{1m} \ln PS / CPI_t + \alpha_{2m} \ln GDPcp_t$$
$$+ \alpha_{3m} SNOW_{mt} + \alpha_{4m} t_t + \varepsilon_{mt},$$

- $m=1,..,5$ months: Nov-Dec, Jan, Feb, Mar, and April-May
- $t=$seasons 1992/1993 to 2013/2014
- YCP: lift ticket sales (net of value added tax) in constant prices
- PS: price index of ski lift tickets
- CPI: consumer prices index
- $GDPcp$: Swedish GDP in constant prices
- prices and GDP refer to the year when the season starts (season 2013/14 uses 2013 values)
- $SNOW$: average monthly snow depth
Empirical model

- dependent and explanatory variables are both I(1) and I(0) => model in first differences (to the same month previous yr)

SUR model:

\[
\begin{align*}
\Delta \ln YCP_{1t} &= \alpha_1 + \alpha_1 \Delta \ln PS / CPI_t + \alpha_2 \Delta \ln GDPcp_t + \alpha_3 \Delta SNOW_{1t} + \alpha_4 D_t + \varepsilon_{1t} \\
\Delta \ln YCP_{2t} &= \alpha_2 + \alpha_1 \Delta \ln PS / CPI_t + \alpha_2 \Delta \ln GDPcp_t + \alpha_3 \Delta SNOW_{2t} + \alpha_4 D_t + \varepsilon_{2t} \\
\Delta \ln YCP_{3t} &= \alpha_3 + \alpha_1 \Delta \ln PS / CPI_t + \alpha_2 \Delta \ln GDPcp_t + \alpha_3 \Delta SNOW_{3t} + \alpha_4 D_t + \varepsilon_{3t} \\
\Delta \ln YCP_{4t} &= \alpha_4 + \alpha_1 \Delta \ln PS / CPI_t + \alpha_2 \Delta \ln GDPcp_t + \alpha_3 \Delta SNOW_{4t} + \alpha_4 D_t + \alpha_{54} EARLYEASTER_t + \varepsilon_{4t} \\
\Delta \ln YCP_{5t} &= \alpha_5 + \alpha_1 \Delta \ln PS / CPI_t + \alpha_2 \Delta \ln GDPcp_t + \alpha_3 \Delta SNOW_{5t} + \alpha_4 D_t + \alpha_{55} EARLYEASTER_t + \varepsilon_{5t}
\end{align*}
\]

\[\text{cov}(\varepsilon_{mt}, \varepsilon_{jt}) = E(\varepsilon_{mt} \varepsilon_{jt}) = \sigma_{mj} \text{ for all } t = 1, 2..T \quad \text{cov}(\varepsilon_{mt}, \varepsilon_{js}) = E(\varepsilon_{mt} \varepsilon_{ms}) = 0 \quad \text{for } t \neq s.\]
Empirical model

• Parameters are short-run elasticities
• When all regressors are the same => OLS and SUR are identical
• SUR model is estimated by two-step feasible generalized Least squares (FGLS) estimator
1. Jämtland
2. Gävleborg
3. Dalarna
Data

• monthly data on lift ticket sales (net of value added tax) in constant prices: SLAO
• GDP in constant prices and CPI: Statistics Sweden
• deflator for lift ticket sales: lift ticket sales in nominal prices/lift ticket sales in constant prices
• snow depth based on three weather stations from SMHI (Storlien-Visjövalen, Särna and Nornas)
• ski lift ticket sales for March and April-May are heavily influenced by timing of Easter holidays
• sample period starts with the 1993/1994 season
• Ski resorts in provinces (counties) of Dalarna, Gävleborg and Jämtland 80 per cent of market and of major importance for local economy
Descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>Monthly data</th>
<th>Annual data:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>percentage ch. in lift ticket sales in const. prices to the same month in the previous year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov-Dec</td>
<td>2.4</td>
<td>22.1</td>
</tr>
<tr>
<td>Jan</td>
<td>1.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Feb</td>
<td>1.6</td>
<td>7.6</td>
</tr>
<tr>
<td>Mar</td>
<td>0.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Apr-May</td>
<td>-1.4</td>
<td>34.5</td>
</tr>
<tr>
<td>Change in log snow depth in percent to the same month in the previous year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov-Dec</td>
<td>-3.5</td>
<td>71.4</td>
</tr>
<tr>
<td>Jan</td>
<td>-1.8</td>
<td>37.1</td>
</tr>
<tr>
<td>Feb</td>
<td>-1.3</td>
<td>30.0</td>
</tr>
<tr>
<td>Mar</td>
<td>-4.0</td>
<td>37.2</td>
</tr>
<tr>
<td>Apr-May</td>
<td>-7.0</td>
<td>68.9</td>
</tr>
<tr>
<td>oth. determinants (percentage ch. to previous yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in real GDP in percent</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>change in relative prices in percent</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>early Easter multiplied by 100</td>
<td>38.1</td>
<td></td>
</tr>
</tbody>
</table>
Empirical results

• Breusch–Pagan test of independence of the residuals: H0 is rejected => SUR more efficient than OLS
• R2 of the equations ranges between 0.10 and 0.34 with an average of 0.25
• real GDP growth significant and positive
• relative prices of ski lift tickets are significant and negative
• average snow depth is significant and positive in the early winter months of November-December and January
• snow depth is not significant for the mid-season months and for the late season
• time scale of weather data is important
• short-run elasticities of lift ticket sales with respect to snow depth are 0.14 for November to December and 0.11 for January.
Empirical results

SUR estimates of the determinants of growth of lift ticket sales

<table>
<thead>
<tr>
<th>dep. var.: year to year change in lift ticket sales</th>
<th>compared to the same month in the previous year</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nov-Dec</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coeff.</td>
<td>t</td>
</tr>
<tr>
<td>change in log av. snow depth</td>
<td>0.14</td>
<td>**</td>
</tr>
<tr>
<td>change in log GDP in constant prices</td>
<td>0.88</td>
<td>***</td>
</tr>
<tr>
<td>change in (deflator lift ticket sales/CPI)</td>
<td>-0.68</td>
<td>**</td>
</tr>
<tr>
<td>dummy time period 2010-11 to 2013-14</td>
<td>-0.08</td>
<td>***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>February</th>
<th>coeff.</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>change in log av. snow depth</td>
<td>0.05</td>
<td>1.07</td>
</tr>
<tr>
<td>change in log GDP in constant prices</td>
<td>0.88</td>
<td>***</td>
</tr>
<tr>
<td>change in (deflator lift ticket sales/CPI)</td>
<td>-0.68</td>
<td>**</td>
</tr>
<tr>
<td>dummy time period 2010-11 to 2013-14</td>
<td>-0.08</td>
<td>***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.03</td>
<td>1.29</td>
</tr>
</tbody>
</table>
Empirical results

SUR estimates of the determinants of growth of lift ticket sales
dep. var.: year to year change in lift ticket sales (compared to the same month in the previous year

<table>
<thead>
<tr>
<th></th>
<th>March</th>
<th></th>
<th></th>
<th>April-May</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coeff.</td>
<td>t</td>
<td>coeff.</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>change in log av. snow depth</td>
<td>-0.03</td>
<td>-0.76</td>
<td>-0.04</td>
<td>-0.69</td>
<td></td>
</tr>
<tr>
<td>change in log GDP in constant prices</td>
<td>0.88</td>
<td>***</td>
<td>3.37</td>
<td>0.88</td>
<td>***</td>
</tr>
<tr>
<td>change in (deflator lift ticket sales/CPI)</td>
<td>-0.68</td>
<td>**</td>
<td>-2.03</td>
<td>-0.68</td>
<td>**</td>
</tr>
<tr>
<td>dummy time period 2010-11 to 2013-14</td>
<td>-0.08</td>
<td>***</td>
<td>-4.28</td>
<td>-0.08</td>
<td>***</td>
</tr>
<tr>
<td>early Easter</td>
<td>0.33</td>
<td>***</td>
<td>12.10</td>
<td>-0.49</td>
<td>***</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.11</td>
<td>***</td>
<td>-4.60</td>
<td>0.18</td>
<td>***</td>
</tr>
</tbody>
</table>
Empirical results

- Effects are calculated in standard deviation units.
- Year-to-year variations in natural snow depth in the early winter season are much more important than economic factors.

Effects of a change in one standard deviation of the main explanatory variables on the percentage change in lift ticket sales

<table>
<thead>
<tr>
<th>explanatory variables</th>
<th>one standard deviation change X 100</th>
<th>elasticity</th>
<th>effect of a one standard deviation increase, percentage p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>change in log snow depth Nov-Dec</td>
<td>68.6</td>
<td>0.14</td>
<td>9.3</td>
</tr>
<tr>
<td>change in log snow depth Jan</td>
<td>40.3</td>
<td>0.11</td>
<td>4.6</td>
</tr>
<tr>
<td>change in log GDP const. prices</td>
<td>2.7</td>
<td>0.88</td>
<td>2.3</td>
</tr>
<tr>
<td>change in log relative prices</td>
<td>2.3</td>
<td>-0.68</td>
<td>-1.5</td>
</tr>
</tbody>
</table>
Conclusions and implications

• lift ticket sales depend negatively on lift ticket prices and positively on real GDP
• income and price elasticities are quite low in absolute terms
• decline in snow depth in the early season has a strong negative impact on lift ticket sales
• effect is much more pronounced than the impact of economic factors
• strong trend decline in lift ticket sales from the season 2010/2011 onwards
• future prospects for Swedish ski lift operators are poor given
 – moderate growth in real domestic income
 – further price increases in lift tickets following huge investments in snow making and new lifts
 – expected increase in green early winter seasons
Conclusions and implications

• implications for stake holders and policy makers
 – attracting a larger group of international skiers
 – More direct flights

• Limitations
 – aggregate time series data

• Future work
 – Similar analysis at the individual ski area level
 – applying the same methodology to other countries
 – accounting for other factors