WIFO TEL. (+43 1) 798 26 01-0 FAX (+43 1) 798 93 86

ÖSTERREICHISCHES INSTITUT FÜR WIRTSCHAFTSFORSCHUNG AUSTRIAN INSTITUTE OF ECONOMIC RESEARCH

1030 WIEN, ARSENAL, OBJEKT 20 • http://www.wifo.ac.at A-1030 VIENNA – AUSTRIA, ARSENAL, OBJEKT 20

Space, Centrality and Prices

Matthias Firgo, Dieter Pennerstorfer & Christoph Weiss

Winterseminar der GfR, Innsbruck/Igls, 25.02.2015

- Strong assumptions wrt symmetry
 - Hotelling (1929)

• Salop (1979)

• Chamberlin (1933)

Introduction II

• Fik (1991)

Balasubramanian (1998)
 Bouckaert (2000)
 Madden and Pezzino (2011)

 A ,Modified Spokes Model'
 Distinguish between Central (C) and Remote (R) firms in space
 "Asymmetric competition" between firms

Chen and Riordan (2007)
 Spokes Model

Introduction III

Model I

$$\pi_{C} = \left(p_{C} - c_{C}\right) \left[\sum_{i=1}^{n} x_{i} + l\left(N - n + 1\right)\right].$$

$$R_{C} = p_{C} = \frac{1}{2} \left[\frac{\sum p_{i}}{n} + t\left(\frac{\sum d_{i}}{n} - d_{C}\right) + c_{C}\right] + tl\left(\frac{N - n}{n}\right).$$

$$\pi_{i} = (p_{i} - c_{i})(d_{i} - x_{i}).$$

$$R_{i} = p_{i} = \frac{1}{2} [p_{C} + t(d_{C} - d_{i}) + c_{i}] + tl.$$

Market Size and Price Transmission:

The reaction of a firm to a price change by a different firm in the local market decreases on average as market size increases.

$$\frac{\sum_{i} \sum_{j \neq i} \frac{\partial p_i}{\partial p_j}}{n(n+1)} = \frac{1}{2n}$$

Centrality and Asymmetry:

The reaction of remote firms to a price change by a central supplier is stronger than the reaction of central firms to a price change by a peripheral supplier. The reaction of on remote firm to a price change by another remote firm is even weaker.

$$\frac{\partial p_i}{\partial p_c} = \frac{1}{2} > \frac{\partial p_c}{\partial p_i} = \frac{1}{2n} > \frac{\partial p_j}{\partial p_i} = 0, \ \forall n > 1 \text{ und } i \neq j \text{ und } i, j \neq c$$

Additional Remark

Gap between simple model and real world

• Alternative I: all markets / firms are considered; each firm is assigned a different `degree of centrality'

(as done by Firgo / Pennerstorfer / Weiss (hopefully 2015): Centrality in Pricing in Spatially Differentiated Markets: The Case of Gasoline

- Alternative II: only local markets the fit the theoretical model are considered (conceptionally similar to Breshnahan und Reiss (1991))
- Next steps:
 - Market definition
 - Finding market centers
 - Determining central suppliers

Definition of Local Markets, Market Center and Central Supplier I

- Delimitation of local markets
 - Several criteria used in the literature
 - Stores with next-neighbor-relations grouped together
 - Creates non-overlapping markets
- Market center
 - Graph theory: 1-median location point. (Hakimi, 1964)
 - Unique location (on a road) minimizing the sum of distances to all stores $(\min d_c + \sum d_i)$
- Central supplier:
 - store located closest to the market center

Definition of Local Markets, Market Center and Central Supplier II

- Delimitation of local markets
 - Easy to implement
 - Can be solved for all observations (with probability \rightarrow 1)
 - Creates non-overlapping ('isolated') markets
- Market center
 - Difficult to implement (each local market looks different)
 - Cannot be solved for all observations
 - Problem of finding a <u>unique</u> point
 - 'This is tedious work, but straightforward.'
- Central supplier:
 - Easy to implement
 - Can be solved for all observations, (with probability \rightarrow 1)

Application to the gasoline market

- Quarterly price data for Diesel
- Oct. 1999 March 2005 (23 periods)
- 596 1,383 gasoline stations (unbalanced panel)
- Location (and station characteristics) for <u>all</u> 2,814 gasoline stations in Austria
- Merged with GIS information on road network (ArcGIS extension of WIGeoNetwork)
- Distance between stations in driving time in minutes
- Other station characteristics:
 - Number of pumps; speed limit at road; brand; shop; ...
- Regional characteristics:
 - Tourists; Commuters; Income; ...

Data II

			with market center and		
	entire sa	mple	prices for all firms		
	cross sec	ction	unbalanced panel		
<u>market size</u>	# of markets #	of stations	# of markets #	of stations	
2	241	482	0	0	
3	176	528	392	1,176	
4	151	604	254	1,016	
5	93	465	94	470	
6	42	252	43	258	
7	27	189	0	0	
8	12	96	0	0	
9	9	81	0	0	
10	1	10	0	0	
11	5	55	0	0	
12	3	36	0	0	
16	1	16	0	0	
total	761	2,814	783	2,920	

Symmetric Model

$$p_{ikt} = \sum_{m=3}^{M} \rho_m \sum_{j \in k} p_{jkt} + X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt}$$

Hypothesis:

 $\rho_m > \rho_{m'}$ for all m < m'

Asymmetric Model

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \left(\rho_m^{C \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) c_{jk} p_{jkt} \right) + \left(\rho_m^{R \to C} \sum_{j \neq i} c_{ik} \left(1 - c_{jk} \right) p_{jkt} \right) + \left(\rho_m^{R \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) \left(1 - c_{jk} \right) p_{jkt} \right) \right\} + X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt}$$

Asymmetric Model

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \left(\rho_m^{C \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) c_{jk} p_{jkt} \right) + \left(\rho_m^{R \to C} \sum_{j \neq i} c_{ik} \left(1 - c_{jk} \right) p_{jkt} \right) + \left(\rho_m^{R \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) \left(1 - c_{jk} \right) p_{jkt} \right) \right\} + \left(X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt} \right)$$

Central Supplier:

$$p_{ikt} = \sum_{m=3}^{M} \left\{ - \left(\rho_m^{R \to C} \sum_{j \neq i} c_{ik} (1 - c_{jk}) p_{jkt} \right) + X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt} \right\}$$

Remote Supplier:

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \left(\rho_m^{C \to R} \sum_{j \neq i} (1 - c_{ik}) c_{jk} p_{jkt} \right) + X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt} \right\}$$

Asymmetric Model

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \left(\rho_m^{C \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) c_{jk} p_{jkt} \right) + \left(\rho_m^{R \to C} \sum_{j \neq i} c_{ik} \left(1 - c_{jk} \right) p_{jkt} \right) + \left(\rho_m^{R \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) \left(1 - c_{jk} \right) p_{jkt} \right) \right\} + \left(X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt} \right)$$

Central Supplier:

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & +X_{ikt}\beta + \mu_k + \theta_t + \varepsilon_{ikt} \end{array} \right\}$$

Remote Supplier:

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \left(\rho_m^{C \to R} \sum_{j \neq i} c_{jk} p_{jkt} \right) + X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt} \right\}$$

$$+ X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt}$$

Asymmetric Model

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \left(\rho_m^{C \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) c_{jk} p_{jkt} \right) + \left(\rho_m^{R \to C} \sum_{j \neq i} c_{ik} \left(1 - c_{jk} \right) p_{jkt} \right) + \left(\rho_m^{R \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) \left(1 - c_{jk} \right) p_{jkt} \right) \right\} + X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt}$$

Hypotheses:

$$\rho_{m}^{C \to R} > \rho_{m}^{R \to C} > \rho_{m}^{R \to R}$$

$$\rho_{m}^{C \to R} = \rho_{m'}^{C \to R} \text{ for all } m, m'$$

$$\rho_{m}^{R \to C} > \rho_{m'}^{R \to C} \text{ for all } m < m$$

Asymmetric Model

$$p_{ikt} = \sum_{m=3}^{M} \left\{ \left(\rho_m^{C \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) c_{jk} p_{jkt} \right) + \left(\rho_m^{R \to C} \sum_{j \neq i} c_{ik} \left(1 - c_{jk} \right) p_{jkt} \right) + \left(\rho_m^{R \to R} \sum_{j \neq i} \left(1 - c_{ik} \right) \left(1 - c_{jk} \right) p_{jkt} \right) \right\} + X_{ikt} \beta + \mu_k + \theta_t + \varepsilon_{ikt}$$

Hypotheses:

$$\rho_{m}^{C \to R} > \rho_{m}^{R \to C} > \rho_{m}^{R \to R}$$

$$\rho_{m}^{C \to R} = \rho_{m'}^{C \to R} \text{ for all } m, m'$$

$$\rho_{m}^{R \to C} > \rho_{m'}^{R \to C} \text{ for all } m < m$$

- Spatial autoregressive (SAR) model with multiple spatial lags of endogenous variable
- Spatially lagged prices are endogenous
- Maximum Likelihood (ML) techniques
- (residuals clustered at station level)

WIFO Spatial Autoregressive Parameters

			· · · · ·	
Market	Effect	Symm	metric Model	
Size		Coef.	(S.D.) Sign.	
3		0.317	(0.005)***	
4		0.212	(0.004)***	
5		0.166	(0.003)***	
6		0.131	(0.004)***	

WIFO Spatial Autoregressive Parameters

WIFO Spatial Autoregressive Parameters

Market	Effect	Symmetric Model		Asymmetric Model			
Size		Coef.	(S.D.)	Sign.	Coef.	(S.D.)	Sign.
3		0.317	(0.005)	***			
4		0.212	(0.004)	***			
5		0.166	(0.003)	***			
6		0.131	(0.004)	***			
3	$C \rightarrow R$				0.306	(0.033)	***
3	$R \rightarrow C$				0.311	(0.006)	***
3	$R \rightarrow R$				0.335	(0.032)	***
4	$C \rightarrow R$				0.288	(0.029)	***
4	$R \rightarrow C$				0.207	(0.004)	***
4	$R \rightarrow R$				0.177	(0.015)	***
5	$C \rightarrow R$				0.438	(0.002)	***
5	$R \rightarrow C$				0.163	(0.004)	***
5	$R \rightarrow R$				0.079	(0.001)	***
6	$C \rightarrow R$				0.403	(0.103)	***
6	$R \rightarrow C$				0.127	(0.004)	***
6	$R \rightarrow R$				0.061	(0.027)	**

Illustration of Results

25

- Ideally: Exogenous (random) shocks at various points in the network as a (quasi-)experiment
- Also, we do not observe or model a demand system
- We do not solve or even address Manski's (1993) reflection problem:

$$p = \rho W p + X \beta + W X \delta + \varepsilon$$

 The spatial patterns might come from prices causally influencing other prices, but might come from other stations characteristics or spatially correlated unobservables.

Nevertheless

- Expectation $\frac{\partial \overline{p}_{i}}{\partial p_{c}} > \frac{\partial p_{c}}{\partial \overline{p}_{i}} > \frac{\partial \overline{p}_{j}}{\partial \overline{p}_{i}}, \forall n > 1 \text{ und } i \neq j$ Finding $\frac{\partial \overline{p}_{i}}{\partial p_{c}} > \frac{\partial p_{c}}{\partial \overline{p}_{i}} > \frac{\partial \overline{p}_{j}}{\partial \overline{p}_{i}}, \forall n > 2 \text{ und } i \neq j$
- The main result is that prices are more strongly correlated with the price charged by station in that is located closest to the market center.
- Highlights: Useful and necessary to take the complex geography of the market into account

27

Extensions

Entry and exit of firms/products

- Endogenous location: Positioning becomes more important with asymmetric firms
- Effect of entry is different (central / remote firm)

Implications of joint ownership

Further slides

WIFO Motivation II: Oscar-Nominees 2013

Motivation III: Game of Thrones

Data (2)

- Location of gasoline stations in the area of ,St. Pölten'
- Definition of Neighborhood and Distance
- Idenitification of ,Central' and ,Remote' station?
- ,Degree of network centrality'

Network of 10 observations (A to J),

- C: 1x nearest neighbor (D), 1x 2nd n. nb. (E):
- D: 3x nearest neighbor (C,E,F), 2x 2nd n. nb. (A,B): $a_{1F} = 0; a_{2F} = 2$

$$a_{1C} = \sum_{j} a_{1Cj} = 1; \quad a_{2C} = \sum_{j} a_{2Cj} = 1$$
$$a_{1D} = 3; \quad a_{2D} = 2$$

 $\overline{h} = 2$

33

Q:

- 'Modified Spokes Model' to highlight importance of 'Centrality'
- Asymmetry in pricing: prices set by central suppliers have stronger impact on neighboring firms than prices set by peripheral firms
- Empirical application to gasoline market
 - Location is main source of product differentiation
 - Heterogeneity (exogenously) determined by the network of roads
- 'Degree of Centrality' influences strategic interactions between firms

Data II

					with market c	center and	
	entire sample		with marke	with market center		prices for all firms	
	cross se	cross section		cross section		unbalanced panel	
market size	# of markets #	of stations a	# of markets #	of station	s	t of stations	
2	241	482	0	0	0	0	
3	176	528	44	132	392	1,176	
4	151	604	61	244	254	1,016	
5	93	465	47	235	94	470	
6	42	252	22	132	43	258	
7	27	189	15	105	0	0	
8	12	96	7	56	0	0	
9	9	81	5	45	0	0	
10	1	10	1	10	0	0	
11	5	55	4	44	0	0	
12	3	36	3	36	0	0	
16	1	16	0	0	0	0	
total	761	2,814	209	1,039	783	2,920	