Does public transit reduce car travel externalities? Quasi-natural experiments' evidence from transit strikes

Martin W. Adler and Jos N. van Ommeren

GFR Innsbruck

23-02-2015

Economics of Public Transit

Advantages of Public Transit

- +Scale economies: Marginal social cost of supplying public transport is lower than the average cost (large fixed costs, Mohring effect)
- +Second-best argument: unpriced negative externalities of car use
- +Equity considerations: low income groups use public transport

Disadvantages of Public Transit

- -Low cross price elasticity between public transit and car use
- -Welfare loss through taxation to generate subsidy
- -Cost inefficient use of labor and capital

How?

How?

How?

Literature

Transport

van Excel and Rietveld (TRA, 2009) When strike come to town

Lo and Hall (TRA, 2006) Effects of the Los Angeles transit strike on highway congestion

<u>Labor</u>

Shalev (JLR, 1980) Trade unionism and economic analysis: The case of industrial conflict

Literature

Benefit of Public Transit

Nelson, Baglino, Harrington Safirova and Lipman (JUE, 2007). Transit in Washington, DC: Current benefits and optimal level of provision

→ benefits exceed subsidies

Parry and Small (AER, 2009). Should Urban Transit Subsidies Be Reduced?

- → fare reduction justified even at 50% of operating cost
- \rightarrow 0.04 minutes per km (all roads)

Anderson (AER, 2014). Subways, Strikes and Slowdowns: The Impacts of Public Transit Strikes

- → benefits much larger than previously thought
- \rightarrow 0.12 minutes per km (highway)

Rotterdam

1.2 million inhabitants (metropolitan region).

RET is private company that receives €200 million annual subsidies (€166 per capita). Public transit modal share is 21% of trips , 350,000 trips each day of the week. Annual 721 million passenger kilometers.

Car household ownership (57%) and modal share (40%) are large for NL. Average trip distance is 15km with a duration of 31 minutes, a average of 30km/h.. An uncongested city.

Annual 3.1 billion passenger kilometers.

Strikes

Strikes in Rotterdam (2000-2011)

13 City-wide strikes

7 Full-day strike

6 Partial-day strike (Strike & non-strike hours)

3 Rail strike

1 Regional bus strike

3 Placebo strikes

Strike heterogeneity in announcement, completeness and cause.

Data

Inner City Traffic

Pneumatic tube measurement
4 Car speed
12 Car flow and 36 bicycle flow

Highway Traffic

Virtual induction loops 7.6 km A16 ring-road

Weather and accident data

Descriptives – Inner City Traffic

Traffic flows

Descriptives – Inner City Traffic

Car speed on Wednesdays May 2011

Car flow on Wednesdays May 2011

Descriptives – Highway Traffic

Car speed on Wednesdays May 2011

\$\\ \frac{1}{90} \\ \frac{1}{9

Car flow on Wednesdays May 2011

Method

Full-day strike

$$\begin{split} logY_{i,t,D} &= \alpha_i + \beta_x X_{t,D} + \left[\beta_1 R_t + \beta_2 (1 - R_t)\right] F_D \\ &+ \left[\left(\beta_3 R_t + \beta_4 (1 - R_t)\right) S_{t,D} + \left(\beta_5 R_t + \beta_6 (1 - R_t)\right) \left(1 - S_{t,D}\right)\right] P_D + u_{i,t,D} \end{split}$$

Partial-day strike hours

Partial-day non-strike hours

 $X_{t.D}$ Controls:

Rail, regional bus and placebo strikes Location fixed effects Hour of the week fixed effects Week of the year fixed effects Year fixed effects Weather

Results – Inner City Traffic

	Car speed (log)	Car flow (log)	Bicycle flow (log)
Full-day city-wide strike			
Rush hour	-0.151 ***	0.094 ***	0.244 ***
	(0.053)	(0.021)	(0.057)
Non-rush hour	-0.064 **	0.069 ***	0.145 **
	(0.029)	(0.024)	(0.062)
Other strikes	Included	Included	Included
Controls	Included	Included	Included
Number of observations	88,106	338,782	719,661
R ²	0.4002	0.7789	0.7474

For full-day strike, speed reduction is 8.3%. Additional 0.129 minutes travel time per kilometer (4.3 cent).

Results – Inner City Traffic

	Car speed (log)	Car flow (log)	Bicycle flow (log)
Partial-day city-wide strike			
Rush and strike hour	-0.209 ***	0.142 ***	0.257 ***
	(0.051)	(0.020)	(0.047)
Non-rush and strike hour	-0.006	0.027	0.100 **
	(0.010)	(0.020)	(0.047)
Rush and non-strike hour	-0.071 ***	0.014	-0.009
	(0.022)	(0.024)	(0.050)
Non-rush and non-strike hour	-0.020	0.010	0.065
	(0.012)	(0.012)	(0.040)
Placebo strike	0.001	-0.000	-0.023
	(0.013)	(0.013)	(0.050)
Regional bus strike	-0.032 **	0.033	0.186 ***
	(0.014)	(0.024)	(0.037)
Rail strike	0.004	0.068 ***	0.117
	(0.017)	(0.017)	(0.092)
Number of observations	88,106	338,782	719,661
R ²	0.4002	0.7789	0.7474

Sensitivity Analysis – Inner City Traffic

	Average speed calculation	Complete strikes only	
	Car speed (log)	Car speed (log)	
Full-day citywide strike			
Rush hour	-0.073 ***	-0.201 ***	
	(0.023)	(0.045)	
Non-rush hour	-0.032 **	-0.081 **	
	(0.014)	(0.034)	
Controls	Included	Included	
Number of observations	88,106	87,882	
R ²	0.6500	0.4007	

Results – Highway Traffic

	Car speed (log)	Car flow (log)
Full-day city-wide strike		
Rush hour	-0.037 ***	0.031 *
	(0.010)	(0.017)
Non-rush hour	-0.025 ***	-0.017
	(0.010)	(0.028)
Placebo strike	-0.015	0.002
	(0.010)	(0.021)
Partial-day city-wide strikes	Incliuded	Included
Controls	Incliuded	Included
Number of observations	771,019	771,019
R ²	0.2152	0.8175

For full-day strike, speed reduction is 2.7%. Additional 0.019 minutes travel time per kilometer (0.6 cent).

Comparison Highway to Inner City

Highway Traffic

0.019 minutes per km < 0.12 minutes per km of Anderson (AER, 2014)

Inner City & Highway Traffic

0.129*0.62+0.019*38 = 0.081 minutes per km

0.081 minutes per km > 0.04 minutes per km of Parry and Small (AER, 2009)

Congestion Relief Benefit

Inner	City	Traffic
-------	------	---------

Highway

532,556 trips

331,744 trips

0.129 minutes per km

0.019 minutes per km

15km trip distance and €20 VOT

€345,633

€31,201

= €376,835 per day

= €95 million per year

Subsidy exceeding benefit € 105 million

Other externalities (e.g. Pollution)?

Long-term benefits (Density, Productivity)?

Egalitairan?

Labor negotiation

Conclusion

Yes, it does. Public transit congestion relief benefit is 0.081 minutes per kilometer for a medium-sized, uncongested city.

The benefit is five times larger for inner city traffic than highway traffic.

The benefit is half of the subsidy and one third of total cost.

Note: Public transit is one of the policy measures to regulate transport market inefficiencies (see., Basso and Silva, 2014).

Bicycle promoting policies might be a very cost-effective policy measure.

Thank you for your attention!

